INSTRUCTIONAL COMPREHENSIVE PROGRAM PLANNING AND REVIEW (CPPR) For 2024

Only to be completed by those programs scheduled for the year according to the institutional comprehensive planning cycle for instructional programs (i.e., every four years for CTE programs and five years for all other instructional programs), which is produced by the Office of Instruction. Faculty should meet with their dean prior to beginning this process. Training is available to support faculty completing this work.

Cluster: 1 Area of Study: STEM Program: Chemistry

Current Academic Year: 2024 Last Academic Year CPPR Completed: 2019

Current Date: 2/6/2024

NARRATIVE: Instructional CPPR

Please use the following narrative outline:

I. Describe how this program review was conducted, including how all program members were involved in the planning process.

All program faculty were invited to participate in this Comprehensive Program Plan and Review. The narrative, analysis, and worksheets were primarily completed by Kelli Gottleib (full-time faculty), Alex Kahane (full-time faculty), Greg Baxley (full-time faculty), Eric Novitsky (full-time faculty) and Bret Clark (full-time faculty). Input was also gathered from our lab technicians, Melissa Sparlin, Maggie Li, and Heather McElroy who assisted in identifying future program needs for the Resource Allocation Plan.

II. GENERAL PROGRAM INFORMATION

Program Mission

The mission of the Chemistry Program, which is part of the Physical Sciences division, is to support the Mission of Cuesta College by assisting our students to achieve their academic, transfer, workforce preparation, career advancement, and personal goals. We provide preparation for transfer students majoring in chemistry and related science and engineering fields, and for occupational students who need chemistry-related knowledge and skills. Additionally, the premedical studies certificate was designed specifically for those students looking to enter professional school programs, such as medical school, veterinary school, optometry school, etc. The department also presents an excellent opportunity for students wishing to enhance their general education and scientific knowledge. The chemistry department is committed to integrating appropriate technology, modern instrumentation, traditional and contemporary

pedagogical approaches, and assessment of student learning into classes to create a supportive environment that engages all students in classroom activities.

Please highlight any changes and improvements since the last Comprehensive Program Review. Be sure to specifically indicate those changes that have been made in the program in order to address equity gaps.

The last Comprehensive Program Plan and Review was completed in the spring of 2020 (during the 2019-20 academic year). No one could have predicted the impact of the COVID-19 pandemic on our students, faculty, staff, and program. One reason why the department and division offered limited numbers of online courses prior to the pandemic was that adequate resources did not exist to provide the same level of instruction as provided in face-to-face classes, and the large investment in time to create their own content. Cuesta's move to fully online instruction during the spring 2020 term left us with little choice: faculty and staff worked tirelessly to create original online video content for our lecture and laboratory courses. Our division held weekly Zoom check-in meetings where faculty could share tips on video editing, Canvas development, captioning, and creative solutions to ameliorate the effects to instruction. Some faculty used multiple cameras and camera angles in laboratory exercises so that students could get as close to the in-person lab experience as possible. Other faculty developed laboratory simulations and procedures from scratch. Our laboratory technicians assisted faculty in making the videos by setting up apparati, serving as camerapeople, and ensuring that the countless hours of videos had accurate captions. Creating online lab materials was immensely challenging in terms of the content and delivering the content to students in a timely manner. Many faculty revised curriculum and activities while teaching remotely and many of those changes have been carried into classes when we returned to in-person instruction. We are very proud of the work we did to minimize the pandemic's impact and provide high-quality instruction while teaching remotely

Over the past 6 years, chemistry success rates increased from 71-73% pre-pandemic to 74-78% during the main COVID problems. Chemistry equity gaps (white - Hispanic/Latino) decreased significantly from around 8% pre-COVID to 4% during COVID. In 2022-2023, success returned to pre-COVID levels, and the equity gap increased significantly to 12.5%. We await the 2023-2024 data to see if the previous year was an anomaly or a trend. Compared to college-wide numbers, our success is slightly lower. Our equity gaps are more variable than the college-wide data (smaller sample size) and depending on the year can be higher or lower than the college as a whole. Compared to a neighboring college, Cuesta Chemistry success is slightly lower but equity gaps are narrower. As we move out of the pandemic, we look to improve student success and close equity gaps. The work that was done during the pandemic should help us in closing some equity gaps. One example of this is that students who

miss class or a lab now may be offered an alternate modality to minimize the impact of their absence. We are also reworking our in-person labs to offer some online components that students work on during their face-to-face lab times. We are trying to take the best of what was created online and weave that into the delivery of our face-to-face classes. Many chemistry faculty have attended JEDI and embraced equitable practices in their teaching. Many of us hold office hours in the Student Success Center, which helps us to be as approachable as possible and allows us to assist students in other chemistry classes.

List all current full-time and part-time faculty in the program.

- III. PROGRAM SUPPORT OF DISTRICT'S MISSION STATEMENT, INSTITUTIONAL GOALS, INSTITUTIONAL OBJECTIVES, AND/OR INSTITUTIONAL LEARNING OUTCOMES
 - A. Identify how your program addresses or helps to achieve the **District's Mission Statement**.

Chemistry supports the district mission by supporting students in their efforts to complete the chemistry and related STEM degrees, advancing in the workforce, and transfer to 4-year institutions. Chemistry is required for transfer in most STEM disciplines and as a prerequisite for classes required for nursing programs. Chemistry

San Luis Obispo County Community College District
Instructional Comprehensive Program Planning & Review
Approved by Academic Senate April 22, 2022 Document to be Used for Submission Spring, March 4, 2024

courses improve the scientific literacy and curiosity needed to make informed decisions about complex issues.

B. Identify how your program addresses or helps to achieve the **District's Institutional Goals and Objectives**, and/or operational planning initiatives.

Goal 1, Access: Chemistry provides access for students by offering Introductory Chemistry and General Chemistry sections at different times during the day, in multiple modalities (face-to-face and hybrid), and at both SLO and NCC sites. CHEM 211 is offered in face-to-face and hybrid modalities, and CHEM 231 is offered online. Chemistry faculty cooperate with Math, Physics, and Biology to reduce course conflicts and promote cohesive schedules for STEM students. Chemistry faculty participate in outreach events, in the Area of Study activities, and other activities to encourage student enrollment and engagement.

Goal 2, completion: Chemistry faculty engage in ways to improve student completion, such as holding help hours in the Student Success Center and at Study-Thon events. Chemistry faculty are active participants in the STEM Student Success Team events that build community and a sense of belonging for STEM students, which are important factors for helping students to do their best in courses and achieve completion.

Chemistry also offers courses that provide additional support for students, including the problem solving courses CHEM 201AX and CHEM 201BX, to give students more practice with chemistry problems in a small group setting, as well as preparation courses for two of the STEM barrier courses: CHEM 201A (CHEM 201P) and CHEM 212A (CHEM 212P) to help students feel more prepared when entering these courses.

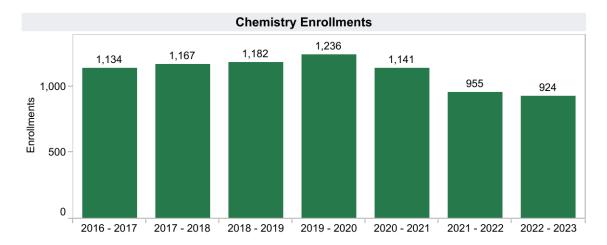
C. Identify how your program helps students achieve **Institutional Learning Outcomes**.

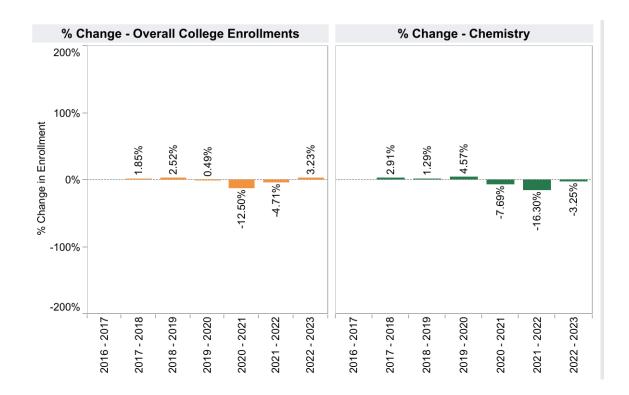
The chemistry program helps students achieve ILO #2 (Critical Thinking and Communication), ILO #3 (Scientific and Environmental Understanding) and ILO #6 (Technological and Informational Fluency).

ILO#2: Chemistry courses improve critical thinking through the development of problem-solving, analytical, and decision-making skills. Students in chemistry often have to solve challenging problems that require them to call upon prior knowledge. These problems can involve critically assessing data for its relevance and accuracy and then using it to know how to approach a problem.

ILO#3: Chemistry courses, by virtue of being STEM courses, develop student's scientific and environmental understanding. Learning chemical principles in chemistry courses helps students understand how the physical and living world operates, starting at the atomic and molecular levels. The material taught in general, organic, and biochemistry courses lay the foundation for comprehension of material in biology and other life sciences as so many vital aspects of life rely on chemistry. Additionally, this material also

helps to make clear how humans are impacting their environment, especially when it comes to climate change.

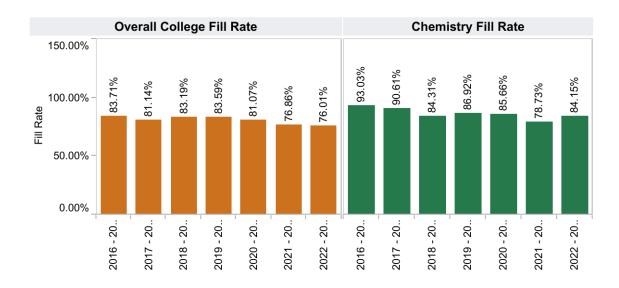

ILO#6: Chemistry courses help with information and technological fluency. Working in the chemistry lab helps students to collect and interpret small, medium, and large amounts of data. For example, students are trained in the use Excel to prepare graphs of their data to not only obtain useful equations but also to quickly be able to identify patterns or relationships between variables. Students use modern instrumentation (colorimeters, pH and temperature probes, UV-vis, IR, HPLC, NMR, etc) and software to digitally collect and process data.


IV. PROGRAM DATA ANALYSIS AND PROGRAM-SPECIFIC MEASUREMENTS (Where applicable the success metrics are aligned with the Student Success Metrics/SCFF).

The data components are hyperlinked below.

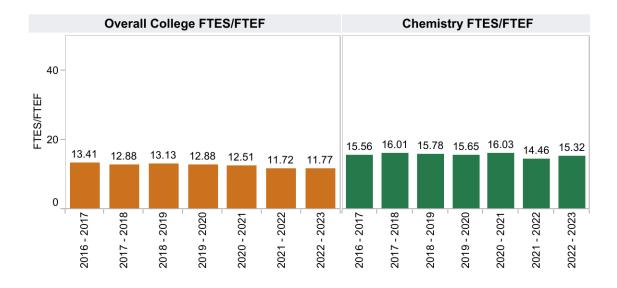
A. General Enrollment (Insert Aggregated Data Chart)

Insert the data chart and explain observed differences between the program and the college.



COVID and staffing challenges have hurt chemistry enrollment. The COVID impact to Chemistry enrollments was experienced later than that of the rest of the college (2021-2022 vs 2020-2021). This may be because students wanted to finish Chemistry course sequences and/or not delay taking courses for which they had already completed prerequisites. The 23-24 academic year seems to indicate a recovery. Chemistry was growing faster than the college pre-COVID.

B. General Student Demand (Fill Rate) (Insert Aggregated Data Chart)


Insert the data chart and explain observed differences between the program and the college.

Fill rates in Chemistry are typically higher than the rest of the college, even with the decline in enrollment.

C. General Efficiency (FTES/FTEF) (Insert Aggregated Data Chart)

Insert the data chart and explain observed differences between the program and the college.

The Chemistry program is more efficient than many other programs at the college, mostly due to the reduced loading in labs and the combined lab/lecture format for many of our offerings.

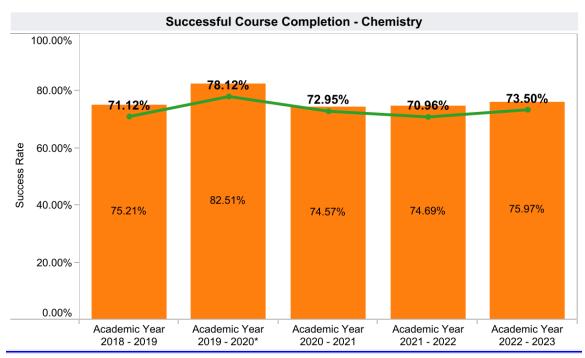
D. Student Success—Course Completion by Modality (Insert Data Chart)

Insert the data chart and explain observed differences between the program and the college.

Successful Course Competion by Modality Table - Chemistry							
		Academic Year 2017 - 2018	Academic Year 2018 - 2019	Academic Year 2019 - 2020*	Academic Year 2020 - 2021	Academic Year 2021 - 2022	Academic Year 2022 - 2023
Face to Face	Department Success Rate	72.41%	72.46%	78.95%	80.00%	70.21%	73.14%
Modality	Total Department Enrollm	1,167	1,151	1,198	105	337	885
Online	Department Success Rate	56.86%	47.83%	64.71%	73.28%	71.61%	89.80%
Modality	Total Department Enrollm	51	46	34	1,045	627	49

The dashboard shows 49 students enrolled in online courses for 2022 – 2023. This value seems incorrect considering fully online and hybrid both count as online and we offered CHEM 201P, two sections of CHEM 201A hybrid, CHEM 212P, and 2 sections of CHEM 231 during that academic year. Our estimate is 150-160 online enrollments.

E. Degrees and Certificates Awarded (Insert Data Chart)


Insert the data chart and explain observed differences between the program and the college.

	Program Awards Table									
Award Type	Award	2016	2017	2018	2019	2020	2021	2022	2023	Academic Year 2023 - 2024
AS	Chemistry (AS)	1	2	2	4	4	3	3	4	
	Total	1	2	2	4	4	3	3	4	
Grand Total		1	2	2	4	4	3	3	4	

Most students taking Chemistry courses are doing so for majors other than Chemistry. Because Chemistry majors are transfer bound, they are focused on completing major requirements and transfer GE. As a result, few complete the local GE requirements needed to receive the AS.

F. General Student Success – Course Completion (Insert Aggregated Data Chart)

Insert the data chart and explain observed differences between the program and **Institutional Standards of Achievement**. If your program did not meet the Institutional Set Standard, please describe how you implement activities to meet the Institutional Set Standard. (The line is our data, the bars are college data)

Chemistry Success Rate Table						
	Academic Year 2017 - 2018	Academic Year 2018 - 2019	Academic Year 2019 - 2020*	Academic Year 2020 - 2021	Academic Year 2021 - 2022	Academic Year 2022 - 2023
Department Success	71.76%	71.51%	78.51%	73.87%	71.13%	74.03%
Total Enrollments	1,218	1,197	1,232	1,150	964	934

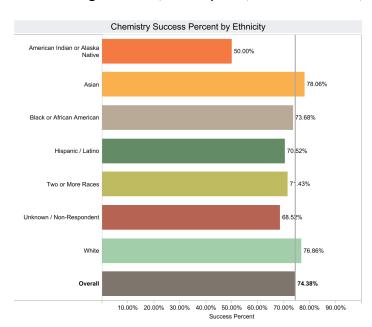
The Institution Set Standard for 2022 – 2023 is 74.0% with a stretch goal of 76.2%. Chemistry fell short of the institution set standard by between 1.5 and 5% over the course of this program review cycle. This shortfall is not surprising as it is not a phenomenon that is unique to Cuesta; chemistry course pass rates (as well as other STEM courses) nationwide are lower than their counterpart non-STEM courses. We are proud of our work in improving student success as we have maintained above a 70% success rate for the department since the last program review.

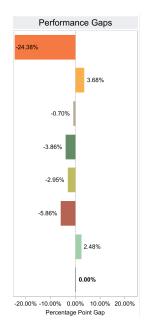
NOTE: More students received "EW" or Excused Withdrawal grades starting in Spring 2020 as a result of the COVID-19 pandemic. Those grades are excluded from the denominator of success rates to maintain alignment with Datamart. As a result, course success rates may be higher in 2020, 2021 and 2022 than in prior years. Included and excluded Ews should be carefully examined locally to more completely understand course performance in Spring 2020 and all terms in 2020-21 and 2021-22.

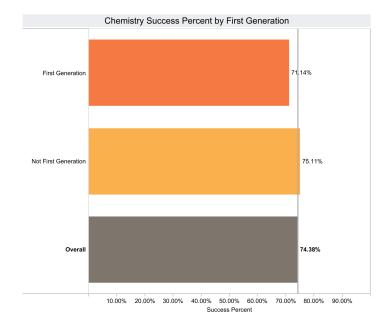
G. What resources might you need to meet and exceed the Institutional Set Standard?

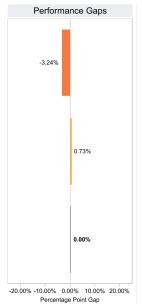
Chemistry was just short of the Institutional Set Standard for the 2022-23 academic year. The return of tutoring, and our Area of Study Team along with programs like MESA are encouraging. We do face learning losses due to COVID that impact the math skills of

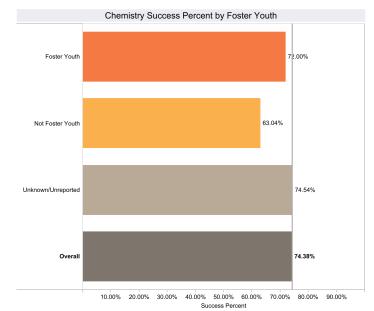
San Luis Obispo County Community College District
Instructional Comprehensive Program Planning & Review
Approved by Academic Senate April 22, 2022 Document to be Used for Submission Spring, March 4, 2024

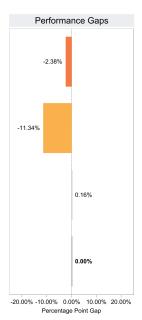

our students. In addition, the implementation of AB 705/1705 has impacted the math skills that students are bringing into Chemistry courses. Access to tools to support algebra skills may increase student success for Chemistry students.

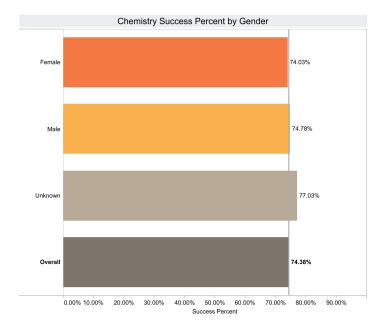

H. Review the **Disaggregated Student Success** charts; include any charts that you will reference. Describe any departmental or pedagogical outcomes that have occurred as a result of programmatic discussion regarding the data presented.

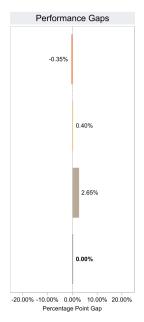

The following are some questions you might want to consider:

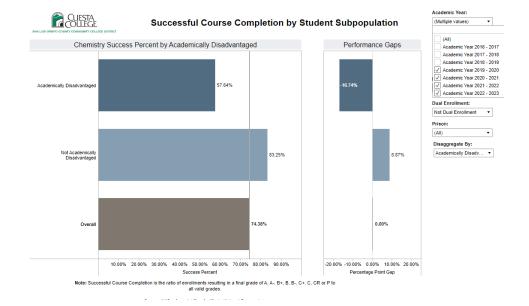

- What strategies have you implemented to address equity gaps in the classroom?
- What type of professional development opportunities are your program faculty participating in to address equity in the classroom?
- What resources might you need to minimize equity gaps?


The disaggregated student success data selected is based on the specific student groups of focus from the Cuesta College Student Equity Plan: black/African American students, first generation, foster youth, female students, and Latinx students.









Regarding disaggregated data and the intent to close equity gaps, Chemistry is doing well in some areas, like Gender, First Generation, and Foster Youth. The gaps seen in Ethnicity and Academically Disadvantaged are significant, especially the latter, but close to the college-wide values.

Other Relevant Program Data (optional)

Provide and comment on any other data that is relevant to your program such as state or national certification/licensure exam results, employment data, etc. If necessary, describe origin and/or data collection methods used.

V. PROGRAMS AND CURRICULUM REVIEW

A. Programs Review

Review the CurrlQunet "Program of Study" outline for each program and indicating yes/no for each program/certificate.

Program/Certifi cate Title (include all those programs and certificates that were active at the time of the last CPPR).	Curren tly active	New progr am since last CPPR (if yes, includ e active date)	Progr am modifi ed since last CPPR (if yes, includ e modifi ed date)	Deactivat ed since last CPPR (if yes, include deactivat ion date)
Chemistry A.S.	yes	no	no	no
Premedical Studies CA	yes	yes, Fall 2019	no	no

For all Currently Active Programs/Certificates, review the CurrlQunet "Program of Study" outline for each active program/certificate and complete the table by indicating yes/no for each column.

Program/Certi ficate Title (include only	Requir ed course	Pro gra m	Prog ram Lear	If any answers are "no" for
those	s and	des	ning	a program,
programs/cert	electiv	crip	Outc	please

ificates that are active).	es (includi ng course numbe rs, titles, and credits) are accurat e	tio n is cur ren t	ome s are accu rate and incl ude met hod of asse ssm ent.	enter a date (MM/DD/Y YYY) in the next 5 years by which the program will be corrected.
Chemistry A.S.	yes	yes	no	12/17/2024
Premedical Studies C.A	yes	yes	yes	

B. Curriculum Review

Complete the **Curriculum Review Worksheet** and submit the form with your CPPR.

Based on information that you enter, the template will create a 5-year calendar for your program to follow during which any modifications to the Course Outline of Record determined during the curriculum review.

What is the purpose of the worksheet? Completing the worksheet provides evidence that the curriculum (including course delivery modalities) have been carefully reviewed during the past five years for currency in teaching practices, compliance with current policies, standards, regulations, and with advisory committee input. The form requires you to include evidence that you have reviewed that the entries on the course outline of record (CurrlQunet format) are appropriate and complete.

VI. PROGRAM OUTCOMES, ASSESSMENT AND IMPROVEMENTS

A. Attach or insert the assessment calendar for your program for the next program review cycle.

CYCLE STAGE	Fall 2024	Sp 2025	Fall 2025	Sp 2026	Fall 2026	Sp 2027	Fall 2027	Sp 2028	Fall 2028
SLO Assessment	201A 211 200 201AX 245ABC	201A 211 200 201AX 245ABC	201B 201BX 212A 201P	201B 201BX 212B 201P	none	none	201B 201BX 212A 201P 231	201B 201BX 212B 201P 231	201A 211 200 201AX 245ABC
Analyze Results & Plan Improvements	201B 201BX 212A/212B 201P	none	201A 211 200 201AX 245ABC	none	201B 201BX 212A/212B 201P	none	none	none	201B 201BX 212A/212B 201P 231
Plan Implementation	212A	201B 201BX 212B 201P	none	201A 211 200 201AX 245ABC	212A	201B 201BX 212B 201P	none	none	none

- B. Have you completed all course assessments in eLumen? If no, explain why you were unable to do so during this program review cycle and what plan(s) exist for completing this in the next program review cycle.
 - With the worldwide pandemic spanning from Spring 2020 with final residual scheduling effects through Spring 2022, student learning outcome assessment was not a priority for much of this program review cycle. The chemistry program plans to make a conscious effort towards staying on schedule with the updated calendar starting from Fall 2022.
- C. Include the most recent "PLO Summary Map by Course" from eLumen which shows the Course-level SLOs mapped to the Program-level SLOs.

See attached

D. Include the most recent "ILO Summary Map by Course" from eLumen that shows the Course-level SLOs mapped to the Institutional Learning Outcomes.

See attached

- E. Highlight changes made at the course or program level that have resulted from SLO assessment. Please include the evidence of dialog that prompted these changes.
 - The faculty that teach CHEM 212A and CHEM 212B organic chemistry, during discussion on SLOA data, discussed extensively the importance of having additional in-class facilitated practice in success. As a result, CHEM 212A and CHEM 212B have switched to a flipped (inverted) classroom model, where students watch lecture videos at home and

then come into class and work on problems in groups. This model allows for instructors to work with students to clear up misconceptions from lectures and ensures that students are doing additional practice outside of just attending lecture. It relies heavily on investment from the students to watch the lecture videos at home; those students that choose not to watch the videos before a lecture meeting get very little out of the lecture meeting as a result. Work will continue in both semesters to emphasize the value of the model and the importance of being prepared when coming to class. While the model is new and only a small amount of assessment data has been collected, it does seem (anecdotally) to be effective for students who commit to the model (and, anecdotally, the majority of students do).

F. Identify and describe any budget or funding requests that are related to student learning outcome assessment results. If applicable, be sure to include requests in the Resource Plan Worksheet and review the Resource Allocation Rubric.

VII. PROGRAM DEVELOPMENT

Indicate how the program supports efforts to achieve any of the following:

- A. Institutional Goals and Objectives
- B. Institutional Learning Outcomes
- C. Program outcomes

Please see Section III above addressing A and B above.

Indicate any anticipated changes in the following areas:

- 1. Curriculum and scheduling
- 2. Support services to promote success, persistence and retention
- 3. Facilities needs
- 4. Staffing needs/projections

Lastly, address any changes in strategy in response to the predicted budget and FTES target for the next program review cycle.

Chemistry faculty understand that there is interest in Cuesta-led dual enrollment at high schools in the area. In spring 2024, Cuesta faculty will meet with representatives from Arroyo Grande High School to determine if a pilot section will be offered in the 2024-25 academic year. If this program is adopted and successful, it is anticipated that at least 3-

5 additional sections will be requested in the upcoming years. Additional faculty will be needed if the demand materializes and the District wishes to pursue it.

Maintaining or adding hybrid and online offerings is one potential strategy that might be employed to increase enrollment. Hybrid CHEM 201A/B and CHEM 211 courses are popular as is the fully online CHEM 231. Some students appreciate the flexibility of the hybrid schedule. Although the data set is small, so far, student learning and success in the hybrid modality is comparable to that seen in face-to-face classes. Program faculty will continue to use data to assess student success in this modality while balancing student success with student demand.

CHEM 200 is a course that has a "facilitator assisted learning" component, a portion of the course that previously involved 1 or 2 peer tutors (called "facilitators") in the classroom for 50 minutes helping students with a weekly assignment from the course homework handbook. The ability to attract student facilitators to the FAL program was in a decline prior to COVID due to the challenge of finding students to serve as the peer tutors. This is partially attributed to the growth of the embedded tutoring program at Cuesta; it is harder to have students agree to tutor for course credit when they could instead tutor for money, and partially attributed to the student demographic of CHEM 200; the majority of enrolled students are non-chemistry majors who never have to take another chemistry class. There is potential to work with the embedded tutoring program at the Student Success Center to collaborate to improve FAL in a unique way, as faculty currently serve as the facilitator for their courses. The FAL program has been quite successful for students, but the model could improve. CHEM 200 has a lab cap at 28 students, 3-4 students higher than recommended for student safety. The division will examine lowering the course cap in the future.

Chemistry tutors in the Student Success Center are in very high demand. The chemistry area of the SSC is often quite full with students with only a few tutors. We see a cycle of tutors as our experienced tutors graduate and we need to work to identify those students that can be the new tutors (faculty can't do it alone!). Additionally, in order to be eligible to tutor at Cuesta, a student must be taking some class either at Cuesta or Cal Poly; this limits our excellent volunteer tutors since they are only allowed to work in that capacity for a limited amount of time at Cuesta. There is a strong need for a dedicated chemistry instructional aid in the Student Success Center, similar to the folks that work in the math lab.

Chemistry maintains a very high percentage of reassign time among its faculty (over 100% load across several faculty). As faculty rotate out of roles with reassign time, chemistry will need to have a discussion about loading and possible course rotations. If chemists maintain these levels of reassign time, it may be necessary to seek additional part-time faculty to cover labs.

The demand in CHEM 200 is quite high, with several waitlists persisting up to the census date. This unmet demand is particularly emphasized now that a long-time CHEM 200 adjunct instructor has retired from Cuesta. Chemistry will need to run a search to find more people to add to its part-time pool to try to keep up with the demand for introductory chemistry. If the demand remains high, it will likely be necessary to hire another FT faculty member with primary loading in CHEM 200.

VIII. END NOTES

If applicable, you may attach additional documents or information, such as awards, grants, letters, samples, lists of students working in the field, etc.

IX. After completing and submitting this document, please complete the Overall Program Strength and Ongoing Viability Assessment with your Dean before May 3, 2024.

SIGNATURE PAGE

Faculty, Director(s), Manager(s), and/or Staff Associated with the Program

Instructional Programs: All full-time faculty in the program must sign this form. If needed, provide an extra signature line for each additional full-time faculty member in the program. If there is no full-time faculty associated with the program, then the part-time faculty in the program should sign. If applicable, please indicate lead faculty member for program after printing his/her name.

Instructional Programs: All full-time director(s), managers, faculty and/or classified staff in the program must sign this form. (More signature lines may be added as needed.)

Bret Clark	Bret Clark (Apr 30, 2024 09:13 PDT)	Apr 30, 2024
Division Chair/Director Name	Signature	Date
Praveen Babu	Praveen Babu	Apr 8, 2024
Name	Signature	Date
Elizabeth Bandi	Elizabeth Bandi	Apr 17, 2024
Name	Signature	Date
Greg Baxley	Gez Bayley	Apr 20, 2024
Name	Signature	Date
Kelli Gottlieb	Zelli M. Lettlåb	Apr 26, 2024
Name	Signature	Date
Alexandra Kahane Unch	Hem	Apr 26, 2024
Name	Signature	Date
Eric Novitsky	Cric Novitsky	Apr 26, 2024
Name	Signature	Date

SIGNATURE PAGE

Faculty, Director(s), Manager(s), and/or Staff Associated with the Program

Instructional Programs: All full-time faculty in the program must sign this form. If needed, provide an extra signature line for each additional full-time faculty member in the program. If there is no full-time faculty associated with the program, then the part-time faculty in the program should sign. If applicable, please indicate lead faculty member for program after printing his/her name.

Instructional Programs: All full-time director(s), managers, faculty and/or classified staff in the program must sign this form. (More signature lines may be added as needed.)

Division Chair/Director Name	Signature	Date
Yuchen Li	<u>Yuchen Li</u> Yuchen Li (Apr 29, 2024 09:39 PDT)	Apr 29, 2024
Name	Signature	Date
Praveen Babu	Heather McElroy (Apr 29, 2024 22:01 PDT)	Apr 29, 2024
Name	Signature	Date
Melissa Sparlin	Melista Sparlin (Apr 30, 2024 07:27 PDT)	Apr 30, 2024
Name	Signature	Date
Name	Signature	 Date
Name	Signature	Date
Name	Signature	Date

SUPPLEMENTAL DOCUMENTS

FACULTY HIRING PRIORITIZATION INFORMATION (IF APPLICABLE)

If your program requested a faculty position for consideration, please attach or embed the following worksheets that were presented to the College Council. The guidelines for faculty prioritization can be found here: **Faculty Prioritization Process Handbook**

APPLICABLE SIGNATURES:	
Vice President/Dean	Date
Division Chair/Director/Designee	Date
Other (when applicable)	Date
The above-signed individuals have read and discussed this re the program involved in the preparation of the CPPR acknow Dean's narrative analysis. The signatures do not necessarily s	ledge the receipt of a copy of the Vice President/

CHEM-CPPR-2024 (3)

Final Audit Report 2024-04-30

Created: 2024-04-03

By: Emily Hinkle (emily_hinkle@cuesta.edu)

Status: Signed

Transaction ID: CBJCHBCAABAAp0t2i9W7YizMW64BQbQJvgAXAjVeDbLd

"CHEM-CPPR-2024 (3)" History

- Document created by Emily Hinkle (emily_hinkle@cuesta.edu) 2024-04-03 9:50:53 PM GMT- IP address: 209.129.64.82
- Document emailed to Praveen Babu (pbabu@cuesta.edu) for signature 2024-04-03 10:08:43 PM GMT
- Email viewed by Praveen Babu (pbabu@cuesta.edu)
 2024-04-05 4:55:17 PM GMT- IP address: 12.16.99.27
- Document e-signed by Praveen Babu (pbabu@cuesta.edu)

 Signature Date: 2024-04-08 6:43:49 PM GMT Time Source: server- IP address: 209.129.64.75
- Document emailed to elizabeth_bandi@cuesta.edu for signature 2024-04-08 6:43:51 PM GMT
- Email viewed by elizabeth_bandi@cuesta.edu 2024-04-08 7:05:01 PM GMT- IP address: 209.129.64.201
- Email viewed by elizabeth_bandi@cuesta.edu 2024-04-15 11:57:21 PM GMT- IP address: 99.110.183.248
- Signer elizabeth_bandi@cuesta.edu entered name at signing as Elizabeth Bandi 2024-04-17 6:59:44 PM GMT- IP address: 209.129.64.125
- Document e-signed by Elizabeth Bandi (elizabeth_bandi@cuesta.edu)

 Signature Date: 2024-04-17 6:59:46 PM GMT Time Source: server- IP address: 209.129.64.125
- Document emailed to Greg Baxley (gbaxley@cuesta.edu) for signature 2024-04-17 6:59:48 PM GMT
- Email viewed by Greg Baxley (gbaxley@cuesta.edu) 2024-04-17 7:05:22 PM GMT- IP address: 209.129.64.200

Document e-signed by Greg Baxley (gbaxley@cuesta.edu)

Signature Date: 2024-04-20 - 7:30:40 PM GMT - Time Source: server- IP address: 141.126.64.160

Document emailed to Kelli Gottlieb (kelli_gottlieb@cuesta.edu) for signature 2024-04-20 - 7:30:42 PM GMT

Email viewed by Kelli Gottlieb (kelli_gottlieb@cuesta.edu)
2024-04-26 - 6:26:20 PM GMT- IP address: 104.47.74.126

Document e-signed by Kelli Gottlieb (kelli_gottlieb@cuesta.edu)

Signature Date: 2024-04-26 - 6:26:37 PM GMT - Time Source: server- IP address: 209.129.64.75

Document emailed to Alexandra Kahane Unch (alexandra_kahaneunch@cuesta.edu) for signature 2024-04-26 - 6:26:39 PM GMT

Email viewed by Alexandra Kahane Unch (alexandra_kahaneunch@cuesta.edu) 2024-04-26 - 6:58:47 PM GMT- IP address: 172.226.184.26

Document e-signed by Alexandra Kahane Unch (alexandra_kahaneunch@cuesta.edu)

Signature Date: 2024-04-26 - 8:21:41 PM GMT - Time Source: server- IP address: 209.129.64.196

Document emailed to Eric Novitsky (eric_novitsky@cuesta.edu) for signature 2024-04-26 - 8:21:43 PM GMT

Email viewed by Eric Novitsky (eric_novitsky@cuesta.edu) 2024-04-26 - 9:35:36 PM GMT- IP address: 104.47.74.126

Document e-signed by Eric Novitsky (eric_novitsky@cuesta.edu)

Signature Date: 2024-04-26 - 9:35:54 PM GMT - Time Source: server- IP address: 185.211.32.122

Document emailed to yuchen_li@cuesta.edu for signature 2024-04-26 - 9:35:56 PM GMT

Email viewed by yuchen_li@cuesta.edu 2024-04-29 - 4:33:14 PM GMT- IP address: 104.47.73.126

Signer yuchen_li@cuesta.edu entered name at signing as Yuchen Li 2024-04-29 - 4:39:25 PM GMT- IP address: 209.129.64.73

Document e-signed by Yuchen Li (yuchen_li@cuesta.edu)

Signature Date: 2024-04-29 - 4:39:27 PM GMT - Time Source: server- IP address: 209.129.64.73

Document emailed to Heather McElroy (heather_mcelroy@cuesta.edu) for signature 2024-04-29 - 4:39:29 PM GMT

Email viewed by Heather McElroy (heather_mcelroy@cuesta.edu) 2024-04-30 - 4:58:17 AM GMT- IP address: 104.47.73.126

- Document e-signed by Heather McElroy (heather_mcelroy@cuesta.edu)

 Signature Date: 2024-04-30 5:01:12 AM GMT Time Source: server- IP address: 75.141.164.26
- Document emailed to Melissa Sparlin (msparlin@cuesta.edu) for signature 2024-04-30 5:01:14 AM GMT
- Email viewed by Melissa Sparlin (msparlin@cuesta.edu) 2024-04-30 5:02:41 AM GMT- IP address: 24.6.163.88
- Document e-signed by Melissa Sparlin (msparlin@cuesta.edu)

 Signature Date: 2024-04-30 2:27:07 PM GMT Time Source: server- IP address: 24.6.163.88
- Document emailed to Bret Clark (bclark@cuesta.edu) for signature 2024-04-30 2:27:09 PM GMT
- Email viewed by Bret Clark (bclark@cuesta.edu) 2024-04-30 2:53:59 PM GMT- IP address: 146.75.154.1
- Document e-signed by Bret Clark (bclark@cuesta.edu)

 Signature Date: 2024-04-30 4:13:26 PM GMT Time Source: server- IP address: 209.129.64.75
- Agreement completed. 2024-04-30 - 4:13:26 PM GMT

